首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习与超分辨率重建的遥感高时空融合方法
引用本文:张永梅,滑瑞敏,马健喆,胡蕾. 基于深度学习与超分辨率重建的遥感高时空融合方法[J]. 计算机工程与科学, 2020, 42(9): 1578-1586
作者姓名:张永梅  滑瑞敏  马健喆  胡蕾
作者单位:(1.北方工业大学信息学院,北京 100144;2.香港理工大学电子与信息工程系,香港 00852;3.江西师范大学计算机信息工程学院,江西 南昌 330022)
基金项目:基本科研业务费项目;教育部天诚汇智创新促教基金;国家自然科学基金;教育部产学合作协同育人项目;全国高等学校计算机教育研究会课题
摘    要:针对遥感影像的“时空矛盾”,提出一种改进STARFM的遥感高时空融合方法。利用SRCNN对低分辨率影像进行超分辨率重建,由于所融合的2组影像分辨率差距过大,网络训练困难,先将2组影像均采样至某一中间分辨率,使用高分辨率影像作为低分辨率影像的先验知识进行SRCNN重建,再将得到的中间分辨率影像重采样后以原始高分辨率影像作为先验知识进行第2次SRCNN重建,得到的最终重建图像相比原先使用插值法重采样所得图像,在PSNR和SSIM上均有提升,缓解了传感器差异所造成的系统误差。STARFM融合方法在筛选相似像元与计算权重时均使用专家知识提取人工特征,基于STARFM时空融合的基本思想,以SRCNN作为基本框架自动提取特征,实验结果表明,其MSE值相比原方法更低,进一步提高了遥感时空融合的质量,有利于充分利用遥感影像。

关 键 词:时空融合  改进STARFM  SRCNN  自动特征提取  
收稿时间:2019-11-07
修稿时间:2020-02-22

A high spatial temporal fusion method based on deep learning and super resolution reconstruction
ZHANG Yong-mei,HUA Rui-min,MA Jian-zhe,HU Lei. A high spatial temporal fusion method based on deep learning and super resolution reconstruction[J]. Computer Engineering & Science, 2020, 42(9): 1578-1586
Authors:ZHANG Yong-mei  HUA Rui-min  MA Jian-zhe  HU Lei
Affiliation:(1.School of Information Science and Technology,North China University of Technology,Beijing 100144; 2.Department of Electronic & Information Engineering,The Hong Kong Polytechnic University,Hong Kong 00852;3.School of Computer Information Engineering,Jiangxi Normal University,Nanchang 330022,China)
Abstract:Aiming at the "space-time conflict" of remote sensing images, a high spatial-temporal fusion algorithm based on improved STARFM is proposed. SRCNN is used for the super-resolution reconstruction of low-resolution images. Due to the large difference in resolution between the two groups of fusion images, the network training is difficult. Firstly, both of the two groups are sampled to an intermediate resolution, and low-resolution images are reconstructed by SRCNN with high-resolution images as their prior knowledge. Secondly, the obtained intermediate resolution images are resampled, and then they are reconstructed by SRCNN with original high-resolution images as their prior knowledge. The resulting reconstructed images have higher PSNR and SSIM than the images resampled by interpolation, alleviating the systematic error caused by the sensor difference. The STARFM fusion method uses expert knowledge to extract artificial features in selecting "Spectrally Similar Neighbor Pixels" and computer their weights. Based on the basic concept of STARFM, an automatic feature extraction method using SRCNN as the basic framework is realized. The experimental results show that this method has lower MSE value than the original STARFM, which further improves the quality of spatial-temporal fusion.
Keywords:spatial-temporal fusion  improved STARFM  SRCNN  automatic feature extraction  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号