首页 | 本学科首页   官方微博 | 高级检索  
     

基于级联宽度学习的疲劳驾驶检测
引用本文:朱玉斌,延向军,申旭奇,卢兆林. 基于级联宽度学习的疲劳驾驶检测[J]. 计算机工程与设计, 2020, 41(2): 537-541
作者姓名:朱玉斌  延向军  申旭奇  卢兆林
作者单位:中国矿业大学 信息与控制工程学院,江苏 徐州 221116;山西潞安集团余吾煤业有限责任公司自动化科,山西 长治 046199;山西潞安环能股份有限公司 常村煤矿,山西 长治 046102
基金项目:国家自然科学基金;江苏省"六大人才高峰"高层次人才项目;江苏省"青蓝工程"项目
摘    要:为减少因疲劳驾驶引发的交通事故,提出融合多参数的驾驶员疲劳检测算法。用渐进校准网络(PCN)检测人脸图像,通过基于CNN的回归模型定位人脸关键点;根据关键点坐标和面部器官的分布规律提取眼睛和嘴部图像,用宽度学习系统(BLS)分别识别眼睛与嘴巴的状态;将眼睛、嘴巴和头部状态的时序序列送入二级宽度网络对司机的状态进行判别。实验结果表明,该算法的疲劳检测准确率为94.9%,单帧检测时间52.43ms。

关 键 词:疲劳检测  宽度学习  深度学习  信息融合  人脸关键点检测

Fatigue driving detection based on cascade broad learning
ZHU Yu-bin,YAN Xiang-jun,SHEN Xu-qi,LU Zhao-lin. Fatigue driving detection based on cascade broad learning[J]. Computer Engineering and Design, 2020, 41(2): 537-541
Authors:ZHU Yu-bin  YAN Xiang-jun  SHEN Xu-qi  LU Zhao-lin
Affiliation:(School of Information and Control Engineering,China University of Mining and Technology,Xuzhou 221116,China;Automation Section,Shanxi Lu’an Group Yuwu Coal Industry Limited Company,Changzhi 046199,China;Changcun Coal Mine,Shanxi Lu’an Environmental Energy Development Limited Company,Changzhi 046102,China)
Abstract:To reduce traffic accidents caused by fatigue driving,a multi-parameter driver fatigue detection method was proposed.Human faces were detected through the progressive calibration network(PCN),and face landmarks were located using CNN regression model.According to the distribution of facial organs and landmarks,the images of eyes and mouth were extracted.The states of eyes and mouth were estimated based on broad learning,respectively.A sequence of eye,mouth and head states was fed into a two-level broad learning system to determine the driver’s fatigue state.Experimental results show that the proposed method achieves the detection accuracy of 94.9%with an average processing time of 52.43 ms per frame.
Keywords:fatigue detection  broad learning  deep learning  information fusion  facial landmark location
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号