首页 | 本学科首页   官方微博 | 高级检索  
     

基于线程融合特征的Windows恶意代码检测与分析
引用本文:周杨,芦天亮,杜彦辉,郭蕊,暴雨轩,李默. 基于线程融合特征的Windows恶意代码检测与分析[J]. 计算机工程与应用, 2020, 56(23): 103-108. DOI: 10.3778/j.issn.1002-8331.2002-0353
作者姓名:周杨  芦天亮  杜彦辉  郭蕊  暴雨轩  李默
作者单位:中国人民公安大学 警务信息工程与网络安全学院,北京 100038
基金项目:"十三五"国家密码发展基金密码理论研究重点课题;中国人民公安大学2020年基本科研业务费重大项目
摘    要:针对当前恶意代码动态分析中存在的提取特征方式单一、检测率低、误报率高等问题,提出一种线程融合特征分析检测方法。基于传统沙箱分析报告,该方法利用线程号分别建立样本API调用序列,将API线程内的调用顺序及返回值作为API参数构建特征,在特征处理阶段分别用统计、计算两种方法构建两类特征,并将LR(Logistic Regression)算法改进的Vec-LR算法用于二分类判断,并与其他算法及软件进行比较。经实验证明,该方法准确率优于当前主流检测方法,可达94.37%。

关 键 词:恶意代码  动态分析  线程融合特征  

Detection and Analysis of Windows Malicious Code Based on Thread Fusion Feature
ZHOU Yang,LU Tianliang,DU Yanhui,GUO Rui,BAO Yuxuan,LI Mo. Detection and Analysis of Windows Malicious Code Based on Thread Fusion Feature[J]. Computer Engineering and Applications, 2020, 56(23): 103-108. DOI: 10.3778/j.issn.1002-8331.2002-0353
Authors:ZHOU Yang  LU Tianliang  DU Yanhui  GUO Rui  BAO Yuxuan  LI Mo
Affiliation:School of Police Information Engineering and Cyber Security, People’s Public Security University of China, Beijing 100038, China
Abstract:Aiming at the problems of single feature extraction, low detection rate and high false alarm rate in the current dynamic analysis of malicious code, a thread fusion feature analysis and detection method is proposed. Based on the traditional sandbox analysis report, this method uses the thread number to establish the sample API call sequence, takes the call sequence and return value in the API thread as the characteristics of API parameter construction, uses the statistical and computational methods to construct the two types of characteristics in the feature processing stage, and uses the Vec-LR algorithm improved by LR algorithm for binary judgment, and compares it with other algorithms and software. Experimental results show that the accuracy of this method is better than the current mainstream detection method, up to 94.37%.
Keywords:malicious code  dynamic analysis  thread fusion feature  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号