首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进SSD算法的双目鱼群图像检测
引用本文:沈军宇,李林燕,戴永良,胡伏原. 基于改进SSD算法的双目鱼群图像检测[J]. 计算机工程与设计, 2020, 41(2): 488-493
作者姓名:沈军宇  李林燕  戴永良  胡伏原
作者单位:苏州科技大学 电子与信息工程学院,江苏 苏州 215009;苏州经贸职业技术学院 信息技术学院,江苏 苏州 215009;昆山市农业信息中心,江苏 苏州 215300
基金项目:科技计划;苏州经贸职业技术学院科研基金项目;国家自然科学基金
摘    要:针对水下鱼群图像对比度低、鱼群尺寸不一致以及双目图像拼接出现的伪影问题,通过改进SSD (single shot MultiBox detector)算法提高图像拼接精度,实现不同尺寸鱼群快速准确检测。借助卷积层重叠相加法融合多个卷积特征,增强各个特征层的特征强度;构建特征金字塔模型,实现低卷积层的高分辨率特征与高卷积层的语义特征的融合,提高水下低对比度图像中小目标鱼群的检测精度;利用两个相同的卷积模型进行特征匹配,依据反向传播机制将第六层匹配特征逐级映射到第四层,提高特征匹配精度。在Labeled fish in the wild数据集上对本文算法进行验证,对小目标鱼群的检测精度在90%以上。

关 键 词:深度学习  图像拼接  目标检测  特征匹配  特征融合

Binocular fish-school image detection based on improved SSD algorithm
SHEN Jun-yu,LI Lin-yan,DAI Yong-liang,HU Fu-yuan. Binocular fish-school image detection based on improved SSD algorithm[J]. Computer Engineering and Design, 2020, 41(2): 488-493
Authors:SHEN Jun-yu  LI Lin-yan  DAI Yong-liang  HU Fu-yuan
Affiliation:(School of Electronic and Information Engineering,Suzhou University of Science and Technology,Suzhou 215009,China;Institute of Information Technology,Suzhou Institute of Trade and Commerce,Suzhou 215009,China;Kunshan Agricultural Information Center,Suzhou 215300,China)
Abstract:Aiming at the problems such as low contrast of underwater fish-school images,inconsistent fish-school sizes and artifacts in binocular image stitching,the SSD(single shot MultiBox detector)algorithm was improved to increase the image stitching accuracy and achieve rapid and accurate detection of fish-school in different sizes.Convolution features were fused by means of the convolution layer overlapping addition method to enhance the strength of each feature.Feature pyramid was constructed to fuse the low convolutional layers with high-resolution features and the high convolutional layers with semantic features,so as to improve the detection accuracy of small targets in low-contrast underwater fish-school images.Two identical convolution models were used for feature matching.According to the backpropagation mechanism,the matching features of the sixth layer were mapped to the fourth layer step by step,and the matching accuracy of the feature was enhanced.A dataset named Labeled fish in the wild was used to verify the proposed algorithm,and the accuracy of small fish-school detection is over 90%.
Keywords:deep learning  image stitching  object detection  feature matching  feature fusion
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号