首页 | 本学科首页   官方微博 | 高级检索  
     

基于密集连接卷积网络的小面积指纹识别方法
引用本文:陈文燕,范文博,杨钧宇. 基于密集连接卷积网络的小面积指纹识别方法[J]. 计算机工程与应用, 2020, 56(10): 134-140. DOI: 10.3778/j.issn.1002-8331.1901-0162
作者姓名:陈文燕  范文博  杨钧宇
作者单位:西安科技大学 电气与控制工程学院,西安 710054
摘    要:针对基于细节特征点的传统指纹识别方法在小面积指纹识别时识别率明显下降的问题,提出一种基于密集连接卷积网络的小面积指纹识别方法。对指纹原图进行图像增强处理,充分利用密集连接卷积网络特征复用的优点构建提取指纹特征的深度学习模型,并将二值特征引进训练模型,依据指纹图像的二值特征和特征向量实现小面积指纹的注册和识别。实验结果表明,所提出的方法在自建数据集中正确识别率达到98.57%,高于基于细节特征点的传统指纹识别方法,基本满足智能移动端的应用要求。

关 键 词:指纹识别  密集连接卷积网络  二值特征  深度学习  

Small-Size Fingerprint Recognition Method Based on Densely Connected Convolutional Network
CHEN Wenyan,FAN Wenbo,YANG Junyu. Small-Size Fingerprint Recognition Method Based on Densely Connected Convolutional Network[J]. Computer Engineering and Applications, 2020, 56(10): 134-140. DOI: 10.3778/j.issn.1002-8331.1901-0162
Authors:CHEN Wenyan  FAN Wenbo  YANG Junyu
Affiliation:School of Electrical and Control Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
Abstract:Focused on the issue that the accuracy rate of the traditional fingerprint methods based on minutiae reduces significantly when dealing with the small-size fingerprint, a small-size fingerprint matching method based on densely connected convolutional networks is presented. Firstly, the image enhancement of original fingerprint images is performed. Additional, a deep learning model for extracting fingerprint features is built with the advantages of the feature reuse of densely connected convolutional networks, and the binary features is introduced. Finally, the small-size fingerprint registration and recognition are accomplished according to the binary features and feature vectors of fingerprint images. The experimental results show that the proposed method achieves a correct recognition rate of 98.57% in the self-built database, which is much higher than the traditional fingerprint matching methods based on minutiae and meets the application requirements of the intelligent mobile terminal.
Keywords:fingerprint recognition  densely connected convolution network  binary features  deep learning  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号