首页 | 本学科首页   官方微博 | 高级检索  
     

基于典型样本的卷积神经网络技术
引用本文:李晓莉,韩鹏,李晓光. 基于典型样本的卷积神经网络技术[J]. 计算机工程与设计, 2020, 41(4): 1113-1117
作者姓名:李晓莉  韩鹏  李晓光
作者单位:辽宁大学信息学院,辽宁沈阳110036;辽宁大学信息学院,辽宁沈阳110036;辽宁大学信息学院,辽宁沈阳110036
基金项目:教育厅科学研究项目;辽宁公共舆情与网络安全大数据系统工程实验室基金项目;国家自然科学基金
摘    要:针对传统卷积神经网络训练过程中,对于全量样本直接进行特征提取会带有过多非关键区分特征使得训练存在模型过拟合、训练收敛慢等问题,提出一种基于典型样本的卷积神经网络TSBCNN。通过部分典型样本生成强化因子指导修正CNN训练,在特征提取阶段更加注重关键区分特征部分,有目的地降低网络训练过程中对非关键特征的学习,有效提高网络训练效果。大量实验结果表明,TSBCNN较传统CNN网络收敛速度和分类准确率有所提高,在一定程度上有效减少过拟合。

关 键 词:卷积  典型样本  关键区分特征  强化因子  指导修正

Convolutional neural network based on typical samples
LI Xiao-li,HAN Peng,LI Xiao-guang. Convolutional neural network based on typical samples[J]. Computer Engineering and Design, 2020, 41(4): 1113-1117
Authors:LI Xiao-li  HAN Peng  LI Xiao-guang
Affiliation:(College of Information,Liaoning University,Shenyang 110036,China)
Abstract:Aiming at the problems such as over-fitting of model,slow convergence of training caused by direct feature extraction of full-size samples,which has abundant non-critical distinguishing features in the process of traditional convolutional neural network training,a CNN model based on typical samples(TSBCNN)was proposed.The enhancement factors were generated by a small amount of typical samples to guide and revise CNN training.In the feature extraction stage,TSBCNN focused more on distinguishing features,reducing the learning of non-critical features in the network training process deliberately,improving the network training effect.Results of experiments show that the convergence speed and classification accuracy of TSBCNN are significantly higher than that of traditional CNN,and over-fitting is effectively reduced partly.
Keywords:convolution  typical samples  critical distinguishing features  enhancement factor  guide and revise
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号