首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波不变矩的雷达辐射源信号识别
引用本文:曹晓航,汪立新,束学渊. 基于小波不变矩的雷达辐射源信号识别[J]. 计算机工程与应用, 2020, 56(19): 269-272. DOI: 10.3778/j.issn.1002-8331.1906-0160
作者姓名:曹晓航  汪立新  束学渊
作者单位:杭州电子科技大学 通信工程学院,杭州 310018
摘    要:针对雷达辐射源信号识别,提出一种基于时频分布的小波不变矩特征向量提取和识别分类方法。对雷达辐射源信号时频图像进行处理,对图像进行小波变换,提取小波矩的特征向量。采用支持向量机分类识别的方法,对特征向量进行训练,实现信号识别。对6种常见雷达信号进行分类,结果表明在信噪比较低的情况下也能取得较好的识别效果,在SNR为-3 dB时,识别正确率仍达到93.9%。

关 键 词:时频分析  支持向量机  小波矩  雷达辐射源信号识别  图像识别  

Radar Emitter Signal Recognition Based on Wavelet Invariant Moment
CAO Xiaohang,WANG Lixin,SHU Xueyuan. Radar Emitter Signal Recognition Based on Wavelet Invariant Moment[J]. Computer Engineering and Applications, 2020, 56(19): 269-272. DOI: 10.3778/j.issn.1002-8331.1906-0160
Authors:CAO Xiaohang  WANG Lixin  SHU Xueyuan
Affiliation:School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
Abstract:To correctly classify advanced radar emitter signal, a novel approach using the feature of wavelet invariant moment which is based on time-frequency distribution is proposed. The method processes the time-frequency image of radar emitter signal. The image is transformed by wavelet transform, and the feature vector of wavelet moment is extracted. The support vector machine classification method is used to train eigenvectors for achieving signal recognition. In this paper, six kinds of common radar signals are classified. Simulation results show that better recognition results can be obtained under the condition of low signal-to-noise ratio. When SNR is -3 dB, the average recognition rate still reaches more than 93.9%.
Keywords:time-frequency analysis  support vector machine  wavelet moment  radar emitter signal identification  image identification  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号