首页 | 本学科首页   官方微博 | 高级检索  
     


Calcination of low-grade laterite for concentration of Ni by magnetic separation
Authors:Jungah Kim  Gjergj Dodbiba  Hideaki Tanno  Katsunori Okaya  Seiji Matsuo  Toyohisa Fujita
Affiliation:1. Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, Eng. Bldg. 4, Room 234, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;2. Eriez Magnetics Japan Co., Ltd., 5-6-2, Tekko-dori, Urayasu, Chiba 279-0025, Japan;1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua road, Shenyang 110016, PR China;2. University of Chinese Academy of Sciences, Beijing 100039, PR China
Abstract:With the continuous depletion of high-grade nickel ores such as millerite and niccolite, nickeliferous laterites have become the major source for the production of nickel metal. However, only 42% of the world’s production of nickel comes from laterites, since the concentration of Ni is relatively low (ca. 2 wt.%). In addition, other metals, such as magnesium, iron and silicon can be found in laterite, which make the concentration of nickel even more difficult.In this study, a low-grade nickeliferous laterite ore was first calcinated and then processed by using a wet magnetic separator in order to recover nickel. Since, the ore contains both Ni and Fe, the calcination of laterite is effective in altering the crystalline structure of Fe species and therefore its magnetic properties, which in turn enable the selective concentration of nickel by magnetic separation that is an easy and environmentally-friendly technique. The experimental results have indicated the importance of carefully controlling: (1) the calcination temperature; (2) the pulp density and (3) applied magnetic field strength. The main finding of this work was that magnetic separation is effective in recovering 48% of nickel from laterite, increasing the Ni grade in the recovered product from 1.5% to 2.9%, when prior to the separation the ore was calcinated at 500 °C for 1 h.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号