首页 | 本学科首页   官方微博 | 高级检索  
     


Antiferromagnetic,Neutral, and Superconducting Band in La2CuO4
Authors:Ekkehard Krüger
Affiliation:(1) Max-Planck-Institut für Metallforschung, D-70506 Stuttgart, Germany
Abstract:The symmetry of the Bloch functions in the conduction band of tetragonal and orthorhombic La2CuO4 is examined for the existence of symmetry-adapted and optimally localizable (usual or spin-dependent) Wannier functions. It turns out that such Wannier functions do not exist in the tetragonal phase. In the orthorhombic phase, on the other hand, the Bloch functions can be unitarily transformed in three different ways into optimally localizable Wannier functions: they can be chosen to be adapted to each of the three phases observed in the pure or doped material, that is, to the antiferromagnetic phase, to the superconducting phase or to the phase evincing neither magnetism nor superconductivity. This group-theoretical result is proposed to be interpreted within a nonadiabatic extension of the Heisenberg model. Within this model, atomic-like states represented by these Wannier functions are responsible for the stability of each of the three phases. However, all the three atomic-like states cannot exist in the tetragonal phase, but are stabilized by the orthorhombic distortion of the crystal. A simple model is proposed which may explain the physical properties of La2−x Sr x CuO4 as a function of the Sr concentrationx.
Keywords:Superconductivity  magnetism  Heisenberg model  group theory
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号