首页 | 本学科首页   官方微博 | 高级检索  
     


Oxidation of Low-Carbon Steel in 17H2O-N2 at 900 °C
Authors:Rex Y. Chen  W.Y.D. Yuen
Affiliation:(1) BlueScope Steel Research, BlueScope Steel—Western Port Works, Hastings, VIC, 3915, Australia;(2) BlueScope Steel Research, Port Kembla, NSW, 2505, Australia
Abstract:The oxidation kinetics of two low-carbon steels in a flowing 17H2O-N2 gas mixture at 900 °C and the scale structures developed are examined. Similar linear and parabolic oxidation kinetics are observed for the two steels, although some differences are observed within the first 5 minutes of oxidation and in the linear-to-parabolic transition period. The oxidation behaviors observed in the linear kinetics stage are more consistent with published results, exhibiting typical surface-reaction-controlled patterns. However, the observed parabolic oxidation rates are two orders of magnitude smaller than those of iron and steel oxidation in air and oxygen as well as that predicted using Wagner’s parabolic oxidation theory. Similar oxide scale structures are observed on the two steels for the samples oxidized for more than 15 minutes. The surfaces of the scales exhibit pyramidal, faceted grain structures with growth ledges developed on some crystal faces and growth pits at the peaks of the pyramidal grains. In their cross sections, the scales have a columnar structure and appear two layered, with a thin, outer magnetite layer and an inner, growing wustite layer. The wustite grains coarsen with increased oxidation time and develop a growth texture with preferred (111) and (110) orientations in parallel to the sample surface after oxidation for longer than 60 minutes. Conventional oxidation theories cannot provide a satisfactory explanation of the apparently conflicting results observed during the parabolic oxidation stage.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号