首页 | 本学科首页   官方微博 | 高级检索  
     

一种邻域线性竞争的排列降维方法
引用本文:闫德勤,吕志超,刘胜蓝. 一种邻域线性竞争的排列降维方法[J]. 计算机应用研究, 2014, 31(1): 99-101
作者姓名:闫德勤  吕志超  刘胜蓝
作者单位:1. 辽宁师范大学 计算机与信息技术学院, 辽宁 大连 116081; 2. 大连理工大学 电子信息与电气工程学部 计算机学院, 辽宁 大连 116024
基金项目:国家自然科学基金资助项目(61105085)
摘    要:局部线性嵌入算法以及局部切空间排列算法是目前对降维研究有着重要影响的算法, 但对于稀疏数据及噪声数据, 在使用这些经典算法降维时效果欠佳。一个重要问题就是这些算法在处理局部邻域时存在信息涵盖量不足。对经典算法中全局信息和局部信息的提取机制进行分析后, 提出一种邻域线性竞争的排列方法(neighborhood linear rival alignment algorithm, NLRA)。通过对数据点的近邻作局部结构提取, 有效挖掘稀疏数据内部信息, 使得数据整体降维效果更加稳定。通过手工流形和真实数据集的实验, 验证了算法的有效性和稳定性。

关 键 词:流行学习  线性化  局部线性嵌入  降维  稀疏数据

Neighborhood linear rival alignment dimensionality reduction algorithm
YAN De-qin,LV Zhi-chao,LIU Sheng-lan. Neighborhood linear rival alignment dimensionality reduction algorithm[J]. Application Research of Computers, 2014, 31(1): 99-101
Authors:YAN De-qin  LV Zhi-chao  LIU Sheng-lan
Affiliation:1. College of Computer & Information Technology, Liaoning Normal University, Dalian Liaoning 116081, China; 2. College of Computer, Faculty of Electronic Information & Electrical Engineering, Dalian University of Technology, Dalian Liaoning 116024, China
Abstract:LLE and LTSA algorithm are famous canonical dimensionality reduction algorithms. However, the algorithms do not perform well on sparse and noise data. The main reason is insufficient information acquisition in the algorithms. Based on the analysis to the canonical algorithms for the mechanism of global and local information acquisition, this paper presented a new algorithm called a NLRA algorithm. The NLRA used neighborhood linear rival alignment algorithm to extract the local structure of the close neighbors of the data points, and effectively mined the internal information of sparse data. The principle of the algorithm enabled stable global dimensionality reduction effect. The experimental results on the manual manifold and sparse real-world datasets show the efficiency and stability of the algorithm.
Keywords:manifold learning  linearization  local linear embedding  dimensionality reduction  sparse data
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号