用简化核主成分分析法实现高光谱遥感影像降维 |
| |
作者姓名: | 曹茜 谭琨 杜培军 夏俊士 |
| |
作者单位: | 1.中国矿业大学环境与测绘学院;2.江苏省资源环境信息工程重点实验室 |
| |
基金项目: | 国家自然科学基金项目(编号:41101423);中央高校基本科研业务费专项资金项目(编号:2010QNA18);国土环境与灾害监测国家测绘局重点实验室开放基金项目(编号:LEDM2010B03,LEDM2011B05);地理空间信息工程国家测绘局重点实验室基金项目(编号:201011) |
| |
摘 要: | 提出用基于Nystrm算法的简化核主成分分析方法(SKPCA)实现高光谱遥感影像的快速降维。首先随机选取部分样本构成子核矩阵并计算其特征向量,然后进行矩阵外推迭代得到近似核矩阵,并分解近似核矩阵不断更新特征向量,最后实现高光谱影像的降维处理。利用OMIS与ROSIS遥感影像进行试验,从运算速度、提取特征信息量以及分类后效果对SKPCA和KPCA(未简化的核主成分分析法)进行比较,结果表明,SKPCA和KPCA提取的特征信息量相当,提取特征与分类效果相近,但SKPCA的运算速度至少要高于KPCA数百倍。
|
关 键 词: | 高光谱遥感影像 KPCA NystrÖm算法 降维 分类 |
本文献已被 CNKI 等数据库收录! |
| 点击此处可从《金属矿山》浏览原始摘要信息 |
|
点击此处可从《金属矿山》下载全文 |