首页 | 本学科首页   官方微博 | 高级检索  
     


The Tea Weevil, <Emphasis Type="Italic">Myllocerinus aurolineatus</Emphasis>, is Attracted to Volatiles Induced by Conspecifics
Authors:Xiao-Ling Sun  Guo-Chang Wang  Xiao-Ming Cai  Shan Jin  Yu Gao  Zong-Mao Chen
Affiliation:(1) Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China;(2) Henan Institute of Science and Technology, Xinxiang, 453000, China;(3) Zhejiang Academy of Agricultural Sciences, Hangzhou, 310008, China;
Abstract:The tea weevil, Myllocerinus aurolineatus (Voss) (Coleoptera: Curculionidae), is a leaf-feeding pest of Camellia sinensis (O.Ktze.) with aggregative behaviors that can seriously reduce tea yield and quality. Although herbivore-induced host plant volatiles have been shown to attract conspecific individuals of some beetle pests, especially members of the Chrysomelidae family, little is known about the volatiles emitted from tea plants infested by M. aurolineatus adults and their roles in mediating interactions between conspecifics. The results of behavioral bioassays revealed that volatile compounds emitted from tea plants infested by M. aurolineatus were attractive to conspecific weevils. Volatile analyses showed that infestations dramatically increased the emission of volatiles, (Z)-3-hexenal, (Z)-3-hexenol, (E)-β-ocimene, linalool, phenylethyl alcohol, benzyl nitrile, indole, (E, E)-α-farnesene, (E)-nerolidol, and 31 other compounds. Among the induced volatiles, 12 chemicals, including γ-terpinene, benzyl alcohol, (Z)-3-hexenyl acetate, myrcene, benzaldehyde, (Z)-3-hexenal, and (E, E)-α-farnesene, elicited antennal responses from both sexes of the herbivore, whereas (E)-β-ocimene elicited antennal responses only from males. Using a Y-tube olfactometer, we found that six of the 13 chemicals, γ-terpinene, benzyl alcohol, (Z)-3-hexenyl acetate, myrcene, benzaldehyde, and (Z)-3-hexenal, were attractive to both males and females; two chemicals, (E/Z)-β-ocimene and (E, E)-α-farnesene, were attractive only to males; and four chemicals, (E)-4,8-dimethyl-1,3,7-nonatriene, phenylethyl alcohol, linalool, and (Z)-3-hexenol, were attractive only to females. The findings provide new insights into the interactions between tea plants and their herbivores, and may help scientists develop new strategies for controlling the herbivore.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号