首页 | 本学科首页   官方微博 | 高级检索  
     


A model analysis of aftereffects of high-intensity DC stimulationon action potential of ventricular muscle
Authors:Sakuma  I Haraguchi  T Ohuchi  K Fukui  Y Kodama  I Toyama  J Shibata  N Hosoda  S
Affiliation:Fac. of Sci. & Eng., Tokyo Denki Univ., Saitama;
Abstract:The mechanism for aftereffects of high-intensity dc stimulation on ventricular muscle was studied by using Beeler-Reuter's action potential model. A leak conductance (Gpore maximal value from 40 to 80 μS for 1 cm2 of membrane), which mimics reversible dielectric breakdown of the cell membrane by the shock, was incorporated into the model. To simulate resealing process, Gpore was assumed to decrease after the shock exponentially at a time constant (τpore) of 5-50 s. The simulation results are qualitatively consistent with the authors' experimental observations in guinea pig papillary muscle (Amer. J. Physiol., vol. 267, p. H248-58, 1994); they include prolonged depolarization, diastolic depolarization or oscillation of membrane potential leading to a single or multiple spontaneous excitation. The phase-independence and shock intensity-dependence can also be reproduced. Analysis of current components has revealed that: (1) a large inward leak current (lleak) is responsible for the prolonged depolarization (2) time-dependent decay of outward current (IX1) in combination with Ileak and slow inward current (Is) results in diastolic depolarization or oscillation of membrane potential; (3) spontaneous excitation depends on an activation of Is. These findings support the authors' hypothesis that strong shocks (>15 V/cm) will produce abnormal arrhythmogenic responses in ventricular muscle through a transient rupture of sarcolemmal membrane
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号