首页 | 本学科首页   官方微博 | 高级检索  
     


Engineering dislocation-rich plastic zones in ceramics via room-temperature scratching
Authors:Xufei Fang  Oliver Preuß  Patrick Breckner  Jiawen Zhang  Wenjun Lu
Affiliation:1. Department of Materials and Earth Sciences, Technical University of Darmstadt, Darmstadt, Germany;2. Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, P. R. China
Abstract:In this communication, we demonstrate a simple but powerful method to engineer dislocations into large plastic zones in various single-crystal ceramic materials via room-temperature scratching. By using a Brinell indenter with a diameter of 2.5 mm, we successfully produced plastic zones with a width and depth of ~150 µm in a single scratch track, while the length of the scratch track can be arbitrarily long depending on the sample size. Increasing the number of repetitive scratching cycles increases the dislocation density up to ~1013 m?2 without visible crack formation. The outlined experimental procedure is showcased on single-crystal SrTiO3, MgO, ZnS, and CaF2 to demonstrate the general applicability of this technique. In light of the increasing research interest in dislocation-tuned functional and mechanical properties in ceramics, our method will serve as a simple, fast, and robust technique to pave the road for scaling up the required large plastic zones for dislocation engineering in ceramics.
Keywords:cyclic loading  dislocations in ceramics  room-temperature plasticity  scratching
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号