首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanical and chemical properties of metakaolin-based geopolymer exposed to elevated temperature
Authors:Tianyi Hua  Ouli Fu  Parvaneh Kheirkhah Barzoki  Yasser Gowayed
Affiliation:Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, New York, USA
Abstract:A method is presented to fabricate metakaolin-based geopolymers that are structurally and mechanically stable up to 600°C. The chemical environment of the geopolymers is characterized using thermogravimetric analysis and Fourier-transform infrared spectroscopy. Residual free water turned into steam and caused damage to the geopolymer when exposed to elevated temperatures. The curing temperature was increased from 80 to 120°C to remove water during the curing process. A correlation was drawn between the amount of Si-O-Al linkage formed and the position of fingerprint peaks in infrared spectra, providing a tool to evaluate the level of geopolymerization. Flexural and tensile properties of geopolymers fabricated using the optimized method were measured for no heat treatment and for exposure to elevated temperatures of 200, 400, and 600°C. The flexural strength was measured to be 10.80 ± 2.99 MPa at room temperature, 10.36 ± 0.64 MPa at 400°C, and 8.04 ± 1.60 MPa at 600°C. The flexural modulus is reported to be 13.09 ± 3.40 GPa at room temperature and 11.03 ± 0.53 GPa at 600°C. The flexural toughness decreased with increasing temperature. The tensile properties of the geopolymer were measured with direct tensile tests paired with an extensometer. The tensile strength decreased from 4.16 ± 2.08 MPa at room temperature to 3.13 ± 0.97 MPa at 400°C, and 2.75 ± 0.86 MPa at 600°C. The Young's modulus decreased from 45.38 ± 30.30 GPa at room temperature to 26.88 ± 6.65 GPa at 600°C. Both flexural and tensile tests have shown that the metakaolin-based geopolymers cured at 120°C is mechanically stable at temperatures up to 600°C.
Keywords:Fourier transform infrared spectroscopy  geopolymers  mechanical properties  thermal treatment  thermogravimetry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号