摘 要: | 为提高海马体分割精度与时间效率,在多图谱分割(Multi-Atlas Segmentation, MAS)脑部图像的配准阶段提出可变形配准网络EDUNet。针对浮动图像与固定图像,进行数据预处理,使其受到外界的影响最小,在配准阶段,用ANTs代替传统“粗”配准,利用卷积神经网络(Convolutional Newral Nerwork, CNN)改进“精”配准,对配准场进行估计,并引入注意力机制及空洞卷积模块。注意力机制用于自动学习和优化注意力特征,加强特征表达能力;空洞卷积扩大感受野,获取多尺度信息;配准中使用端到端网络,减少配准时间、提高配准效率。算法在OASIS数据集与LBPA40数据集进行了验证,配准精度可达0.786 3,使用基于局部二元模式的特征提取方法进行标签融合后,最终分割精度较其他方法提升3%~10%,验证了算法的有效性和准确性。
|