首页 | 本学科首页   官方微博 | 高级检索  
     


Pitch controller for wind turbine load mitigation through consideration of yaw misalignment
Affiliation:1. School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore;2. Department of Mechanical Engineering, University of Auckland, 20 Symonds Street, Auckland 1010, New Zealand
Abstract:Recent developments in sensor and actuator technologies have promoted the design and implementation of individual pitch controllers (IPCs) to mitigate fatigue loads on turbine blades caused by vertical wind shear. So far, IPCs have been designed assuming perpendicularity of the oncoming wind with respect to the turbine rotor plane as an independent yaw controller is dedicated to eliminate any misalignments. In this paper, a multi-input-multi-output (MIMO) IPC is designed based on the knowledge of mitigated blade load at a yawed inflow condition (i.e., yaw misalignment at certain angular position). Nonetheless, the proposed IPC is still to operate in the typical turbine configuration, in which the turbine is aligned with the wind direction. Performance of the proposed IPC is compared with that of the baseline collective pitch controller (CPC) and baseline IPC on simulations of the NREL 5 MW reference turbine at various turbulent wind conditions. Compared with the baseline CPC, the proposed controller is shown to contribute at least a 31.54% reduction in the blade out-of-plane fatigue load, a 35.32% reduction in the tower fore-aft fatigue load, and a 29.80% reduction in the tower side-to-side fatigue load.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号