Discrete Fourier Transform as applicable technique in electrochemical detection of hydrazine using multi-walled carbon nanotube/polyacrylonitrile ceramic fiber as working electrode |
| |
Authors: | Mohammad Mahdi Doroodmand |
| |
Affiliation: | Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran;Nanotechnology Research Institute, Shiraz University, Shiraz, Iran |
| |
Abstract: | Effect of “Discrete Fourier Transform” (DFT) is studied for electrochemical detection of some electroactive species using multi-walled carbon nanotube/polyacrylonitrile ceramic fiber as ultra micro electrode. Based on DFT theory, two independent phases i.e. the imaginary and real phases are evaluated during the oxidation/reduction of the quasi-reversible or irreversible electroactive species, revealing the independent components of imaginary (IImaginary) and real (IReal) currents. The results show that, in different electrochemical modes such as cyclic voltammetry (CV), the contribution of DFT to the electrochemical signals significantly improves the detection limit of the electrochemical technique. More sensitive signals are obtained at high scan rates according to the combination of electrochemical techniques with the DFT theory. The reliability of DFT algorithm was evaluated for rapid determination of trace amount of hydrazine (N2H4) at a scan rate up to 800 V s? 1. In this study, the amounts of phase and amplitude were estimated to 1.69 and 31.57, respectively. The detection limit of hydrazine was 4.13 × 10? 9 M. The application of this technique was also evaluated for determination of hydrazine in different industrial wastewater samples. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|