首页 | 本学科首页   官方微博 | 高级检索  
     


Enhanced sintering ability of biphasic calcium phosphate by polymers used for bone scaffold fabrication
Authors:Chengde Gao  Bo Yang  Huanlong Hu  Jinglin Liu  Cijun Shuai  Shuping Peng
Affiliation:1. State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, PR China;2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China;3. Cancer Research Institute, Central South University, Changsha 410078, PR China;4. Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
Abstract:Biphasic calcium phosphate (BCP), which is composed of hydroxyapatite HAP, Ca10(PO4)6(OH)2] and β-tricalcium phosphate β-TCP, β-Ca3(PO4)2], is usually difficult to densify into a solid state with selective laser sintering (SLS) due to the short sintering time. In this study, the sintering ability of BCP ceramics was significantly improved by adding a small amount of polymers, by which a liquid phase was introduced during the sintering process. The effects of the polymer content, laser power and HAP/β-TCP ratios on the microstructure, chemical composition and mechanical properties of the BCP scaffolds were investigated. The results showed that the BCP scaffolds became increasingly more compact with the increase of the poly(l-lactic acid) (PLLA) content (0–1 wt.%) and laser power (6–10 W). The fracture toughness and micro-hardness of the sintered scaffolds were also improved. Moreover, PLLA could be gradually decomposed in the late sintering stages and eliminated from the final BCP scaffolds if the PLLA content was below a certain value (approximately 1 wt.% in this case). The added PLLA could not be completely eliminated when its content was further increased to 1.5 wt.% or higher because an unexpected carbon phase was detected in the sintered scaffolds. Furthermore, many pores were observed due to the removal of PLLA. Micro-cracks and micro-pores occurred when the laser power was too high (12 W). These defects resulted in a deterioration of the mechanical properties. The hardness and fracture toughness reached maximum values of 490.3 ± 10 HV and 1.72 ± 0.10 MPa m1/2, respectively, with a PLLA content of approximately 1 wt.% and laser power of approximately 10 W. Poly(l-lactic-co-glycolic acid) (PLGA) showed similar effects on the sintering process of BCP ceramics. Rectangular, porous BCP scaffolds were fabricated based on the optimum values of the polymer content and laser power. This work may provide an experimental basis for improving the mechanical properties of BCP bone scaffolds fabricated with SLS.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号