首页 | 本学科首页   官方微博 | 高级检索  
     

RBF网络的结构动力响应预测
引用本文:郭剑虹,刘建新,张丽娟. RBF网络的结构动力响应预测[J]. 工程抗震与加固改造, 2007, 29(5): 49-52
作者姓名:郭剑虹  刘建新  张丽娟
作者单位:上海师范大学建筑工程学院,上海,201418;上海师范大学建筑工程学院,上海,201418;上海师范大学建筑工程学院,上海,201418
摘    要:由于结构主动控制对地震反应振动控制的高效性,使主动控制在建筑结构振动控制领域中,具有广阔的应用前景,但是主动控制存在难以建立一个精确的数学模型,存在时滞效应等问题.神经网络不需要建立精确的数学模型,只是通过学习输入输出训练样本数据,就可归纳出隐含在系统输入输出中的关系;应用神经网络预测结构响应可以解决主动控制中的时滞问题,为控制决策提供依据.用RBF神经网络对结构响应进行预测,以期能为结构主动控制提供一种新的思路.

关 键 词:结构控制  动力响应  BP神经网络  预测
文章编号:1002-8412(2007)05-0049-04
修稿时间:2007-04-30

Prediction of Structural Dynamic Response with RBF Neural Network
Guo Jian-hong,Liu Jian-xin,Zhang Li-juan. Prediction of Structural Dynamic Response with RBF Neural Network[J]. Earthquake Resistant Engineering and Retrofitting, 2007, 29(5): 49-52
Authors:Guo Jian-hong  Liu Jian-xin  Zhang Li-juan
Affiliation:College of Architecture Engineering, Shanghai Normal University, Shanghai 201418, China
Abstract:Structural active control is more efficient in the control of seismic response,which makes active control have wide application prospect in the field of structural vibration control.But it is hard to establish an accurate mathematics model for the active control which has the problem of time lag.Neural network doesn't need to establish accurate mathematics model,it sums up the relation implicit in the systematic input and output through studying the input and output training sample data.By applying neural network to predict structural response,the problem of time lag in active control may be solved and the basis for controlling decision is offered.A new method for the structural active control may be offered by predicting the structural response with RBF neural network.
Keywords:structural control  dynamic response  RBF neural network  prediction
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号