首页 | 本学科首页   官方微博 | 高级检索  
     


Learning Control of Robot Manipulators in Task Space
Authors:K. M. Dogan  E. Tatlicioglu  E. Zergeroglu  K. Cetin
Affiliation:1. Department of Electrical & Electronics Engineering, Izmir Institute of Technology, Urla, Izmir, Turkey;2. Department of Computer Engineering, Gebze Technical University, Gebze, Kocaeli, Turkey
Abstract:Two important properties of industrial tasks performed by robot manipulators, namely, periodicity (i.e., repetitive nature) of the task and the need for the task to be performed by the end‐effector, motivated this work. Not being able to utilize the robot manipulator dynamics due to uncertainties complicated the control design. In a seemingly novel departure from the existing works in the literature, the tracking problem is formulated in the task space and the control input torque is aimed to decrease the task space tracking error directly without making use of inverse kinematics at the position level. A repetitive learning controller is designed which “learns” the overall uncertainties in the robot manipulator dynamics. The stability of the closed‐loop system and asymptotic end‐effector tracking of a periodic desired trajectory are guaranteed via Lyapunov based analysis methods. Experiments performed on an in‐house developed robot manipulator are presented to illustrate the performance and viability of the proposed controller.
Keywords:Learning control  task space control  robot manipulators
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号