An E‐HOIM Based Data‐Driven Adaptive TILC of Nonlinear Discrete‐Time Systems for Non‐Repetitive Terminal Point Tracking |
| |
Authors: | Na Lin Ronghu Chi Biao Huang Chiang‐Ju Chien Yuanjing Feng |
| |
Affiliation: | 1. College of Automation and Electronics Engineering, Qingdao University of Science and Technology, Qingdao, PRC;2. Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada;3. Department of Electronic Engineering, Huafan University, New Taipei City, Taiwan;4. School of Information Engineering, Zhejiang University of Technology, Hangzhou, PRC |
| |
Abstract: | This work proposes a new adaptive terminal iterative learning control approach based on the extended concept of high‐order internal model, or E‐HOIM‐ATILC, for a nonlinear non‐affine discrete‐time system. The objective is to make the system state or output at the endpoint of each operation track a desired target value. The target value varies from one iteration to another. Before proceeding to the data‐driven design of the proposed approach, an iterative dynamical linearization is performed for the unknown nonlinear systems by using the gradient of the nonlinear system with regard to the control input as the iteration‐and‐time‐varying parameter vector of the equivalent linear I/O data model. By virtue of the basic idea of the internal model, the inverse of the parameter vector is approximated by a high‐order internal model. The proposed E‐HOIM‐ATILC does not use measurements of any intermediate points except for the control input and terminal output at the endpoint. Moreover, it is data‐driven and needs merely the terminal I/O measurements. By incorporating additional control knowledge from the known portion of the high order internal model into the learning control law, the control performance of the proposed E‐HOIM‐ATILC is improved. The convergence is shown by rigorous mathematical proof. Simulations through both a batch reactor and a coupled tank system demonstrate the effectiveness of the proposed method. |
| |
Keywords: | Data‐driven control adaptive terminal ILC extended high‐order internal model iteration‐variant referenced terminal point nonlinear discrete‐time processes |
|
|