首页 | 本学科首页   官方微博 | 高级检索  
     

基于图像退化模型的图像去雾算法
引用本文:苏国强,张明. 基于图像退化模型的图像去雾算法[J]. 计算机系统应用, 2017, 26(4): 173-178
作者姓名:苏国强  张明
作者单位:上海海事大学 信息工程学院, 上海 201306,上海海事大学 信息工程学院, 上海 201306
摘    要:在雾、霾之类的恶劣天气下拍摄的图像,由于存在大气的散射作用,使得物体特征难以辨认,严重影响了图像的视觉效果,同时还妨碍了图像的特征提取. 因此,需要利用去雾技术对图像进行增强和修复,以改善视觉效果和方便后期处理. 本文针对暗原色先验去雾算法耗时长和处理效果不佳等问题,提出了一种改进的自适应边界约束去雾算法. 同时,引入了信息熵和平均梯度对其进行客观评价,对比实验结果表明该方法运算速度快,在细节处理上效果更好.

关 键 词:去雾  边界约束  自适应
收稿时间:2016-07-23
修稿时间:2016-09-05

Image Defog Algorithm Based on Image Degradation Model
SU Guo-Qiang and ZHANG Ming. Image Defog Algorithm Based on Image Degradation Model[J]. Computer Systems& Applications, 2017, 26(4): 173-178
Authors:SU Guo-Qiang and ZHANG Ming
Affiliation:Information Engineering College, Shanghai Maritime University, Shanghai 201306, China and Information Engineering College, Shanghai Maritime University, Shanghai 201306, China
Abstract:For the images captured in the bad weather like fog or haze, the atmospheric scattering effect not only seriously affects the visual appearance of the image, but also hinders the image feature extraction. Therefore, it needs de-fog technology for image enhancement and restoration, to improve the visual effects and convenience of post-processing. Because that dark colors prior algorithm is time consuming and has poor treatment effect etc., we put forward an improved algorithm of boundary constraints defogging algorithms. At the same time, we introduce information entropy and average gradient to evaluate the algorithm objectively. Comparison of experimental results shows that this method has a high computing speed, and better effects on the deal.
Keywords:defogging  boundary constraints  adaptive
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号