Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation |
| |
Authors: | Cyril Voyant Marc Muselli Christophe PaoliMarie-Laure Nivet |
| |
Affiliation: | a University of Corsica, CNRS UMR SPE 6134, 20250 Corte, Franceb Castelluccio Hospital, Radiotherapy Unit, BP 85, 20177 Ajaccio, France |
| |
Abstract: | This paper presents an application of Artificial Neural Networks (ANNs) to predict daily solar radiation. We look at the Multi-Layer Perceptron (MLP) network which is the most used of ANNs architectures. In previous studies, we have developed an ad-hoc time series preprocessing and optimized a MLP with endogenous inputs in order to forecast the solar radiation on a horizontal surface. We propose in this paper to study the contribution of exogenous meteorological data (multivariate method) as time series to our optimized MLP and compare with different forecasting methods: a naïve forecaster (persistence), ARIMA reference predictor, an ANN with preprocessing using only endogenous inputs (univariate method) and an ANN with preprocessing using endogenous and exogenous inputs. The use of exogenous data generates an nRMSE decrease between 0.5% and 1% for two stations during 2006 and 2007 (Corsica Island, France). The prediction results are also relevant for the concrete case of a tilted PV wall (1.175 kWp). The addition of endogenous and exogenous data allows a 1% decrease of the nRMSE over a 6 months-cloudy period for the power production. While the use of exogenous data shows an interest in winter, endogenous data as inputs on a preprocessed ANN seem sufficient in summer. |
| |
Keywords: | Time series forecasting Processing Artificial neural networks PV plant Energy prediction Stationarity |
本文献已被 ScienceDirect 等数据库收录! |
|