首页 | 本学科首页   官方微博 | 高级检索  
     


A molecular dynamics study of the effects of branching characteristics of LDPE on its miscibility with HDPE
Authors:Zhengang J FanMichael C Williams  Phillip Choi
Affiliation:Department of Chemical and Materials Engineering, University of Alberta, 536 Chemical & Materials Engineering Building, Edmonton, Alta., Canada T6G 2G6
Abstract:The effects of branching characteristics of low-density polyethylene (LDPE) on its melt miscibility with high-density polyethylene (HDPE) were studied using molecular simulation. In particular, molecular dynamics (MD) was applied to compute Hildebrand solubility parameters (δ) of models of HDPE and LDPE with different branch contents at five temperatures that are well above their melting temperatures. Values computed for δ agreed very well with experiment. The Flory-Huggins interaction parameters (χ) for blends of HDPE and different LDPE models were then calculated using the computed δ values. The level of branch content for LDPE above which the blends are immiscible and segregate in the melt was found to be around 30 branches/1000 long chain carbons at the chosen simulation temperatures. This value is significantly lower than that of butene-based linear low-density polyethylene (LLDPE) (40 branches/1000 carbons) in the blends with HDPE computed by one of the authors (polymer 2000; 41:8741). The major difference between LDPE and LLDPE models is that each modeled LDPE molecule has three long chains while each modeled LLDPE molecule had only one long chain. The present results together with those of the LLDPE/HDPE blends suggest that the long chain branching may have significant influence on the miscibility of polyethylene blends at elevated temperatures.
Keywords:Polyethylene blend  Molecular dynamics  Flory-Huggins interaction parameter
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号