首页 | 本学科首页   官方微博 | 高级检索  
     

基于模型检测的微服务组合平台QoS验证
引用本文:毛昕怡,钮俊,丁雪儿,张开乐. 基于模型检测的微服务组合平台QoS验证[J]. 计算机应用, 2005, 40(11): 3267-3272. DOI: 10.11772/j.issn.1001-9081.2020030387
作者姓名:毛昕怡  钮俊  丁雪儿  张开乐
作者单位:宁波大学 信息科学与工程学院, 浙江 宁波 315211
基金项目:教育部嵌入式系统与服务计算重点实验室开放课题(ESSCKF2019-07);宁波市自然科学基金资助项目(2019A610088)。
摘    要:针对当前缺少对微服务组合平台的服务质量(QoS)指标进行分析验证的问题,提出一种基于模型检测的形式化验证方法,对影响微服务平台性能的因素进行分析评估。首先,将微服务组合的服务资源配置过程划分为服务请求、资源配置和服务执行3个阶段,并分别由服务请求队列、服务请求配置器和提供服务资源的虚拟机等模块实现;其次,将各个模块的实现过程建模为带标记Markov回报模型(LMRM),借助类似于进程代数的同步概念获得微服务组合过程的全局模型;接着,用连续随机回报逻辑公式刻画期望的QoS指标;最后,将形式模型与逻辑公式作为模型检测工具PRISM的输入以获得验证结果。实验结果表明,LMRM可较好地用于微服务组合平台的建模和QoS验证分析。

关 键 词:微服务组合   连续时间Markov链   连续随机回报逻辑   模型检测   PRISM
收稿时间:2020-03-31
修稿时间:2020-05-14

QoS verification of microservice composition platform based on model checking
MAO Xinyi,NIU Jun,DING Xueer,ZHANG Kaile. QoS verification of microservice composition platform based on model checking[J]. Journal of Computer Applications, 2005, 40(11): 3267-3272. DOI: 10.11772/j.issn.1001-9081.2020030387
Authors:MAO Xinyi  NIU Jun  DING Xueer  ZHANG Kaile
Affiliation:Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo Zhejiang 315211, China
Abstract:Concerning the problem that microservice composition platform is short of analysis and verification of Quality of Service (QoS) indicators, a formal verification method based on model checking was proposed to analyze and evaluate the factors that affect the microservice composite platform performance. First, the service resource configuration process of microservice composition was divided into three phases:service request, configuration and service execution. These three phases were implemented by three modules:service request queue, resource configurator of service requests and virtual machine for providing service resources. After that, the implementation processes of the three modules were modeled as Labelled Markov Reward Models (LMRM), and the global model of microservice composition process was obtained by using a synchronization concept similar to the process algebra. Then, the logic formula of continuous random reward logic was used to describe the expected QoS indicators. Last, the formal model and logic formula were regarded as the input of model detection tool PRISM to obtain the verification results. Experimental results prove that LMRM can realize the QoS verification and analysis as well as the construction of microservice composite platform.
Keywords:microservice composition   continuous-time Markov chain   continuous stochastic reward logic   model checking   PRISM
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号