首页 | 本学科首页   官方微博 | 高级检索  
     

基于声誉与基于网络结构的用户聚类比较分析
引用本文:刘晓露,贾书伟,王建民. 基于声誉与基于网络结构的用户聚类比较分析[J]. 计算机仿真, 2020, 37(2): 221-225
作者姓名:刘晓露  贾书伟  王建民
作者单位:复旦大学经济学院,上海200433;河南农业大学信息与管理科学学院,河南郑州450002;安徽理工大学经济与管理学院,安徽淮南232001
基金项目:中国博士后科学基金面上项目;国家自然科学基金;教育部人文社会科学研究项目
摘    要:用户聚类问题是在线用户行为分析的一个重要研究方向。基于在线评分系统,用户声誉反映的是用户对产品打分的准确程度,用户——产品二部分网络结构反映的是用户对产品的品味偏好。结合声誉度量算法,分别采用DBSCAN方法和基于模块度的贪婪算法从用户打分准确程度和品味偏好角度进行用户聚类,提出一种一致性度量指标来衡量根据用户声誉与根据网络结构得到的两种聚类结果之间的联系。两个实证数据集上的实验结果表明根据用户声誉与根据网络结构得到的两种聚类结果是不一致的,说明打分准确程度相似的用户的品味偏好并不相似。

关 键 词:在线评分系统  用户聚类  用户声誉  网络结构  在线用户行为分析

Comparison of User Clustering Based on User Reputation and Network Structure
LIU Xiao-lu,JIA Shu-wei,WANG Jian-min. Comparison of User Clustering Based on User Reputation and Network Structure[J]. Computer Simulation, 2020, 37(2): 221-225
Authors:LIU Xiao-lu  JIA Shu-wei  WANG Jian-min
Affiliation:(School of Economics,Fudan University,Shanghai 200433,China;College of Information and Management Science,Henan Agricultural University,Zhengzhou Henan 450002,China;School of Economics and Management,Anhui University of Science and Technology,Huainan Anhui 232001,China)
Abstract:User clustering is an important research hotspot in online user behavior analysis.User reputation reflects the accuracy of ratings which users give to objects for online rating systems,while network structure of user-object bipartite networks reflects the user preference to the objects.Combined with the existing several reputation measurement algorithms,users were clustered with DBSCAN method and the greedy algorithm based on the modular degree from the user rating accuracy and taste preferences,respectively.A consistency metric was proposed to measure the association between two clustering results obtained based on the user reputation and the network structure.The experimental results based on the two empirical datasets show that the two clustering results based on the user reputation and the network structure are inconsistent,indicating that the taste preferences of users with similar rating accuracy are not similar.
Keywords:Online rating systems  User clustering  User reputation  Network structure  Behavior analysis for online users
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号