首页 | 本学科首页   官方微博 | 高级检索  
     

CMOPSO/D算法的发酵过程补料优化控制
引用本文:柏杨,王建林,于涛,赵利强. CMOPSO/D算法的发酵过程补料优化控制[J]. 计算机与应用化学, 2014, 31(10): 1262-1266
作者姓名:柏杨  王建林  于涛  赵利强
作者单位:北京化工大学息科学与技术学院,北京,100029
摘    要:为了改善发酵过程补料优化控制的性能指标,提出一种基于改进的分解多目标粒子群优化算法的发酵过程补料优化控制方法。将发酵过程的多目标优化问题分解为若干单目标优化问题,对每个单目标优化问题应用2个粒子群协同搜索最优解,其中一个种群对连接向量进行搜索,改进了连接向量的更新方式,另一个种群将决策空间分解,使用不同种群对不同维度的解向量进行优化,并在进化过程中使用前一个种群的最优解构成完整的解向量评价每个子群的最优解,提高了最优解评价的准确性,保证算法收敛到全局最优解。将该算法用到在工业酵母发酵过程模型中,对补料速率进行优化控制,并同时优化2个性能指标,即菌体浓度最大化和乙醇浓度最小化,并与基本的分解粒子群优化算法的优化结果作对比,该算法获得的Pareto前沿在基本分解粒子群优化算法获得的Pareto前沿下方,并且分布更加完整。实验证明该算法能够获得最优补料速率,使工业酵母发酵过程的菌体浓度提高了约9%,乙醇浓度降低了约为15%,为发酵过程补料优化控制提供了一种有效方法。

关 键 词:粒子群优化算法  多目标分解  协同进化  发酵过程  优化控制

Optimal control of fed-batch fermentation process with CMOPSO/D
Bai Yang,Wang Jianlin,Yu Tao,Zhao Liqiang. Optimal control of fed-batch fermentation process with CMOPSO/D[J]. Computers and Applied Chemistry, 2014, 31(10): 1262-1266
Authors:Bai Yang  Wang Jianlin  Yu Tao  Zhao Liqiang
Affiliation:Bai Yang;Wang Jianlin;Yu Tao;Zhao Liqiang;College of Information Science and Technology,Beijing University of Chemical Technology;
Abstract:
Keywords:particle swarm optimization  multi-object decomposition  cooperative coevolution  fermentation process  optimal control
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号