首页 | 本学科首页   官方微博 | 高级检索  
     

权重提取与Dempster多重融合的凝汽器真空预测
引用本文:夏琳琳,台金娟,刘惠敏,王丹,文磊. 权重提取与Dempster多重融合的凝汽器真空预测[J]. 沈阳工业大学学报, 2015, 37(3): 329-334. DOI: 10.7688/j.issn.1000-1646.2015.03.16
作者姓名:夏琳琳  台金娟  刘惠敏  王丹  文磊
作者单位:东北电力大学 自动化工程学院, 吉林 吉林 132012
基金项目:吉林省科技厅青年科研基金资助项目(20130522171JH)
摘    要:为了解决单一网络预测结果不准确的问题,提出一种由BP、Elman及RBF三网络组合的预测模型,并引入模糊软集理论进行"判断证据"的权重提取以及D-S的多证据融合.以某电厂连续4天实测的现场参数构成样本空间,经主成分分析降维及权重提取后,采用Dempster组合规则下置信函数三重融合结果对随后一天的真空值进行预测.结果表明,与单一网络预测模型相比,组合预测模型的平均绝对误差和均方根误差均显著减小,融合精度更高.

关 键 词:凝汽器真空值  神经网络  Dempster组合规则  模糊软集  主成分分析  组合预测模型  权重提取  数据融合  

Condenser vacuum prediction based on weight extraction and Dempster multiple fusion
XIA Lin-lin;TAI Jin-juan;LIU Hui-min;WANG Dan;WEN Lei. Condenser vacuum prediction based on weight extraction and Dempster multiple fusion[J]. Journal of Shenyang University of Technology, 2015, 37(3): 329-334. DOI: 10.7688/j.issn.1000-1646.2015.03.16
Authors:XIA Lin-lin  TAI Jin-juan  LIU Hui-min  WANG Dan  WEN Lei
Affiliation:School of Automation Engineering, Northeast Dianli University, Jilin 132012, China
Abstract:In order to solve the prediction uncertainty of single network, a combined prediction model composed of three networks of BP, Elman and RBF was proposed, and the weight extraction of judge evidences and the fusion of multi evidences based on D S theory were performed through introducing the fuzzy soft set theory. In addition, the sample space was established with the measured field parameters in 4 continuous days for certain power plant. After the procedures of dimensionality reduction and weight extraction, the vacuum value prediction in the following day was performed with the triple fusion results of belief functions with Dempster combining rule. The results show that compared with the single network prediction model, the average absolute error and RMSE of combined prediction model obviously reduce, and the fusion accuracy is higher. 
Keywords:condenser vacuum value  neural network  Dempster combining rule  fuzzy soft set  principal component analysis  combined prediction model  weight extraction  data fusion  
本文献已被 CNKI 等数据库收录!
点击此处可从《沈阳工业大学学报》浏览原始摘要信息
点击此处可从《沈阳工业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号