首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进MP稀疏分解的语音识别方法
引用本文:高显忠,侯中喜. 基于改进MP稀疏分解的语音识别方法[J]. 计算机应用, 2009, 29(6): 1572-1574
作者姓名:高显忠  侯中喜
作者单位:国防科学技术大学,航天与材料工程学院,长沙,410073
摘    要:在限定输入词汇量的条件下进行语音识别的过程中,结合MP稀疏分解的原子结构特性,提出把语音信号经MP稀疏分解所得的最佳原子时频参数作为匹配参数对语音进行识别。用基于遗传算法和原子库划分的策略对MP稀疏分解的寻优过程进行改进以提高MP稀疏分解的效率。在Matlab环境下进行仿真试验时,采用LGB算法对测试信号进行判别。试验结果表明,MP稀疏分解算法经改进后运行速度得到提高,采用10个原子的时频参数可有效识别长度约为6000的语音信号。

关 键 词:语音识别  遗传算法  匹配追踪稀疏分解算法  库划分  speech recognition  genetic algorithm  Matching Pursuit (MP) sparse decomposition  dictionary partition
收稿时间:2008-12-24
修稿时间:2009-03-02

Speech recognition based on improved MP sparse decomposition algorithm
GAO Xian-zhong,HOU Zhong-xi. Speech recognition based on improved MP sparse decomposition algorithm[J]. Journal of Computer Applications, 2009, 29(6): 1572-1574
Authors:GAO Xian-zhong  HOU Zhong-xi
Affiliation:College of Astronautics and Material Engineering;National University of Defense Technology;Changsha Hunan 410073;China
Abstract:Based on the limit of input glossaries and the characters of atoms structure in Matching Pursuit (MP) sparse decomposition, a new speech recognition algorithm was proposed through using the best obtained atoms' time-frequency parameters as matching parameters among test signals and swatch signals. In order to enhance the computing efficiency of MP sparse decomposition, the strategy based on dictionary partitioning and Genetic Algorithm (GA) was applied. In Matlab, the LGB algorithm was used to distinguish test signals. The simulation results show that the speech signal with length 6000 can efficiently be recognized through using ten atoms' time-frequency parameters, while the running speed of improved MP sparse decomposition algorithm is enhanced.
Keywords:
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号