首页 | 本学科首页   官方微博 | 高级检索  
     


An intelligent sampling approach for metamodel-based multi-objective optimization with guidance of the adaptive weighted-sum method
Authors:Cheng Lin  Fengling Gao  Yingchun Bai
Affiliation:1.National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering,Beijing Institute of Technology,Beijing,China;2.Collaborative Innovation Center of Electric Vehicles in Beijing,Beijing Institute of Technology,Beijing,China
Abstract:In order to reduce the computational cost of multi-objective optimization (MOO) with expensive black-box simulation models, an intelligent sampling approach (ISA) is proposed with the guidance of the adaptive weighted-sum method (AWS) to construct a metamodel for MOO gradually. The initial metamodel is built by using radial basis function (RBF) with Latin Hypercube Sampling (LHS) to distribute samples over the design space. An adaptive weighted-sum method is then employed to obtain the Pareto Frontier (POF) efficiently based on the metamodel constructed. The design variables related to extreme points on the frontier and an extra point interpolated between the maximal-minimal-distance point along the frontier and the nearest boundary point are selected as the concerned points to update the metamodel, which could improve the metamodel accuracy gradually. This iterative updating strategy is performed until the optimization problem is converged. A series of representative mathematical examples are systematically investigated to demonstrate the effectiveness of the proposed method, and finally it is employed for the design of a bus body frame.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号