首页 | 本学科首页   官方微博 | 高级检索  
     


Microstructure and performance of multi-dimensional WC-CoCr coating sprayed by HVOF
Authors:Xiang Ding  Xu-Dong Cheng  Chao Li  Xiang Yu  Zhang-Xiong Ding  Cheng-Qing Yuan
Affiliation:1.State Key Laboratory of Advanced Technology for Materials and Processing,Wuhan University of Technology,Wuhan,China;2.School of Energy and Power Engineering,Wuhan University of Technology,Wuhan,China
Abstract:WC-based coatings deposited by high velocity oxy-fuel (HVOF) spraying have been widely used in many industrial fields, where mechanical components are subjected to severe abrasive wear. Much attention has been especially paid to nanostructured and multimodal WC-based coatings due to their excellent abrasive wear resistance. In this study, a new kind of multi-dimensional WC-10Co4Cr coating, composed of nano, submicron, micron WC particles and CoCr alloy, was developed by HVOF. The microstructure, porosity, microhardness, fracture toughness, and electrochemical properties of the coating were investigated in comparison with nanostructured WC-10Co4Cr coating deposited by HVOF. Abrasive wear resistance of both WC-10Co4Cr coatings was evaluated on wet sand rubber wheel abrasion tester. The results show that the multi-dimensional coating possesses low porosity (0.31 ± 0.09%), excellent microhardness (1126 ± 115 HV0.3), fracture toughness (4.66 ± 0.51 MPa m1/2), and outstanding electrochemical properties. Moreover, the multi-dimensional coating demonstrates approximately 36% wet abrasive resistance enhancement than the nanostructured coating. The superior abrasive wear resistance originates from the coating’s multi-dimensional structure and excellent mechanical and electrochemical properties.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号