首页 | 本学科首页   官方微博 | 高级检索  
     


Efficient optimum seismic design of reinforced concrete frames with nonlinear structural analysis procedures
Authors:Panagiotis E. Mergos
Affiliation:1.Research Centre for Civil Engineering Structures, Department of Civil Engineering,City University of London,London,UK
Abstract:Performance-based seismic design offers enhanced control of structural damage for different levels of earthquake hazard. Nevertheless, the number of studies dealing with the optimum performance-based seismic design of reinforced concrete frames is rather limited. This observation can be attributed to the need for nonlinear structural analysis procedures to calculate seismic demands. Nonlinear analysis of reinforced concrete frames is accompanied by high computational costs and requires a priori knowledge of steel reinforcement. To address this issue, previous studies on optimum performance-based seismic design of reinforced concrete frames use independent design variables to represent steel reinforcement in the optimization problem. This approach drives to a great number of design variables, which magnifies exponentially the search space undermining the ability of the optimization algorithms to reach the optimum solutions. This study presents a computationally efficient procedure tailored to the optimum performance-based seismic design of reinforced concrete frames. The novel feature of the proposed approach is that it employs a deformation-based, iterative procedure for the design of steel reinforcement of reinforced concrete frames to meet their performance objectives given the cross-sectional dimensions of the structural members. In this manner, only the cross-sectional dimensions of structural members need to be addressed by the optimization algorithms as independent design variables. The developed solution strategy is applied to the optimum seismic design of reinforced concrete frames using pushover and nonlinear response-history analysis and it is found that it outperforms previous solution approaches.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号