首页 | 本学科首页   官方微博 | 高级检索  
     


Research on unbounded abrasive polishing process with assisted ultrasonic vibration of workpiece
Authors:Guangchao Han  Jia Zhao  Xingyun Wang
Affiliation:1.School of Mechanical Engineering and Electronic Information,China University of Geosciences,Wuhan,China;2.State Key Laboratory of Materials Processing and Die & Mould Technology,Huazhong University of Science and Technology,Wuhan,China;3.State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,Harbin,China
Abstract:Ultrasonic-assisted machining was an effective method to improve the material removal quality especially to difficult-to-cut metal materials. The ultrasonic vibration was usually superimposed on the machining tool but seldom on the workpiece, although the ultrasonic vibration of workpiece could improve the processability of material more effectively. In this paper, a rectangle hexahedron ultrasonic sonotrode with optimized slots was developed as a platform to realize the assisted ultrasonic vibration of workpiece and the ultrasonic-assisted polishing process of austenitic stainless steel was also studied. The unbounded abrasive was selected as polishing medium, and the path compensation strategy of soft polishing tool was carried out for getting uniform polishing force. The orthogonal experiments were designed to study the optimization of ultrasonic polishing parameters and the relation between different types of ultrasonic polishing path and polishing quality. The results appear that the horizontal ultrasonic vibration of workpiece can reduce polishing force and improve polished surface roughness, which can also reinforce the proportion of plastic shear effect in the material removal process. The ultrasonic polishing path keeping consistent with workpiece vibration direction can get more uniform polishing force and better surface roughness. And the 45° oblique crossing ultrasonic path can get the maximum average polishing force reduction by 75.2 %.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号