首页 | 本学科首页   官方微博 | 高级检索  
     


Bubble growth rates in nucleate boiling of water at subatmospheric pressures
Authors:SJD van Stralen  R Cole  WM Sluyter  MS Sohal
Affiliation:Transportphysics Section, Eindhoven University of Technology, Eindhoven, Netherlands
Abstract:The growth rate of vapour bubbles has been investigated experimentally up to departure in water boiling at pressures varying from 26·7 to 2·0 kPa (the corresponding Jakob number increasing from 108 to 2689).Comparison of the data with existing theory shows the substantial influence of liquid inertia during initial growth, in agreement with previous results of Stewart and Cole 1]on water boiling at 4·9 kPa, the Jakob number varying from 955 to 1112. As an extreme case, at a pressure of 2·0 kPa, large “Rayleigh” bubbles are observed during the entire adherence time. During advanced growth, bubble behaviour is gradually governed by heat diffusion, especially at relatively high (subatmospheric) pressures.Experimental bubble growth in the investigated pressure range is in quantitative agreement with the van Stralen, Sohal, Cole and Sluyter theory 10]. This model combines the Rayleigh solution with a diffusion-type solution, which accounts for the contributions to bubble growth due to both the relaxation microlayer (around the bubble dome) and the evaporation microlayer (beneath the bubble).Finally, a curious bubble cycle is observed at the lowest investigated pressures, which is attributed to the combined action of a high-velocity liquid jet (originating in the wake following a large primary bubble) and a succeeding secondary vapour column (generated at the adjacent dry spot at the heating wall beneath the primary bubble).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号