首页 | 本学科首页   官方微博 | 高级检索  
     


Active mission success estimation through functional modeling
Authors:Ada-Rhodes Short  Robert D. D. Hodge  Douglas L. Van Bossuyt  Bryony DuPont
Affiliation:1.Oregon State University,Corvallis,USA;2.Colorado School of Mines,Golden,USA;3.KTM Research, LLC,Tualatin,USA
Abstract:Through the application of statistical models, the active mission success estimation (AMSE) introduced in this paper can be performed during a rapidly developing unanticipated failure scenario to support decision making. AMSE allows for system operators to make informed management and control decisions by performing analyses on a nested system of functional models that requires low time and computational cost. Existing methods for analyses of mission success such as probabilistic risk assessment or worst case analysis have been applied in the analysis and planning of space missions since the mid-twentieth century. While these methods are effective in analyzing anticipated failure scenarios, they are built on computational models, logical structures, and statistical models that often are difficult and time-intensive to modify, and are computationally inefficient leading to very long calculation times and making their ability to respond to unanticipated or rapidly developing scenarios limited. To demonstrate AMSE, we present a case study of a generalized crewed Martian surface station mission. A crew of four astronauts must perform activities to achieve scientific objectives while surviving for 1070 Martian sols before returning to Earth. A second crew arrives at the same site to add to the settlement midway through the mission. AMSE uses functional models to represent all of the major environments, infrastructure, equipment, consumables, and critical systems of interest (astronauts in the case study presented) in a nested super system framework that is capable of providing rapidly reconfigurable and calculable analysis. This allows for AMSE to be used to make informed mission control decisions when facing rapidly developing or unanticipated scenarios. Additionally, AMSE provides a framework for the inclusion of humans into functional analysis through a systems approach. Application of AMSE is expected to produce informed decision making benefits in a variety of situations where humans and machines work together toward mission goals in uncertain and unpredictable conditions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号