首页 | 本学科首页   官方微博 | 高级检索  
     


Multi-criteria fuzzy decision support for conceptual evaluation in design of mechatronic systems: a quadrotor design case study
Authors:Abolfazl Mohebbi  Sofiane Achiche  Luc Baron
Affiliation:1.Department of Mechanical Engineering,école Polytechnique de Montréal,Montreal,Canada
Abstract:Designing mechatronic systems is known to be a very complex and tedious process due to the high number of system components, their multi-physical aspects, the couplings between the different domains involved in the product, and the interacting design objectives. This inherent complexity calls for the crucial need of a systematic and multi-objective design thinking methodology to replace the often-used sequential design approach that tends to deal with the different domains and their corresponding design objectives separately leading to functional but not necessarily optimal designs. Thus, a new approach based on a multi-criteria profile for mechatronic systems is presented in this paper for the conceptual design stage. Additionally, to facilitate fitting the intuitive requirements for decision-making in the presence of interacting criteria, three different methods are proposed and compared using a case study of designing a vision-guided quadrotor drone system. These methods benefit from three different aggregation techniques such as Choquet integral, Sugeno integral and fuzzy-based neural network. To validate the decision yielded by the results of global concept score for each aggregation methods, a computer simulation of a visual servoing system on all design alternatives for quadrotor drone has been performed. It is shown that although the Sugeno fuzzy can be a useful aggregation function for decisions under uncertainty, but the approaches using Choquet fuzzy and fuzzy integral-based neural network seem to be more precise and reliable in a multi-criteria design problem where interaction between the objectives cannot be overlooked.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号