首页 | 本学科首页   官方微博 | 高级检索  
     

基于K-means的金属矿物光片嵌布粒度测量
引用本文:罗朝熙,和丽芳,黄宋魏,黄 斌,马关宇. 基于K-means的金属矿物光片嵌布粒度测量[J]. 有色金属工程, 2022, 0(7)
作者姓名:罗朝熙  和丽芳  黄宋魏  黄 斌  马关宇
作者单位:昆明理工大学 国土资源工程学院,昆明理工大学,昆明理工大学 国土资源工程学院,云南省地质矿产勘查开发局中心实验室,云南省地质矿产勘查开发局中心实验室
基金项目:云南省科技厅基金资助项目(编号:202101AT070277)
摘    要:目前金属矿物嵌布粒度的测定主要依靠技术人员在显微镜下观测,存在工作量大、观测粒度准确度和精度不高等问题。因此提出了基于K-means聚类算法的金属矿物嵌布粒度测量方法。K-means算法初始聚类中心数K值的准确预设是本方法的核心之一,本项目对此开展了深入研究,发现利用金属矿物光片显微镜下图像中的颜色特征,对原矿图像中的矿物种类进行准确判别,再将识别到的矿物颜色特征作为设置K值的依据。通过K-means算法将目的矿物的颜色聚类为单一的颜色,对聚类的图像进行颜色分割,最后利用Feret Diameter精确测量出该金属矿物嵌布粒度。结果表明:该方法明显提高了金属矿物嵌布粒度测量的准确度、精度和效率,具有极大的应用价值。

关 键 词:嵌布粒度   K-means  颜色分割  Feret Diameter
收稿时间:2021-11-09
修稿时间:2021-11-22

Particle size measurement of metallic minerals polished section based on K-means
LUO Chaoxi,HE Lifeng,HUANG Songwei,HUANG Bin and MA Guanyu. Particle size measurement of metallic minerals polished section based on K-means[J]. Nonferrous Metals Engineering, 2022, 0(7)
Authors:LUO Chaoxi  HE Lifeng  HUANG Songwei  HUANG Bin  MA Guanyu
Affiliation:School of Land and Resources Engineering,Kunming University of Science and Technology,School of Land and Resources Engineering,Kunming University of Science and Technology,School of Land and Resources Engineering,Kunming University of Science and Technology,Yunnan Provincial Bureau of Geology and Mineral Exploration and Development Center Laboratory,Kunming,Yunnan Provincial Bureau of Geology and Mineral Exploration and Development Center Laboratory,Kunming
Abstract:At present, the determination of the particle size of metal minerals inlays mainly relies on the observation of technicians under a microscope, which has problems such as heavy workload and low accuracy and precision of the observed particle size. Therefore, a particle size measurement method based on K-means clustering algorithm is proposed. The accurate presetting of the K value of the initial clustering center number of the K-means algorithm is one of the cores of this method. This project has carried out in-depth research on this and found that the color features in the image under the light sheet microscope of metal minerals can be used for the run of mine image. Accurately distinguish the types of minerals, and then use the identified mineral color characteristics as the basis for setting the K value. The color of the target mineral is clustered into a single color through the K-means algorithm, the clustered image is color segmented, and the Feret Diameter is used to accurately measure the particle size of the metal mineral patch. The results show that this method obviously improves the accuracy, precision and efficiency of the particle size measurement of metallic mineral intercalation, and has great application value.
Keywords:particle size   K-means  color segmentation   Feret Diameter
点击此处可从《有色金属工程》浏览原始摘要信息
点击此处可从《有色金属工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号