摘 要: | 为了进一步提高锅炉燃烧火焰图像状态识别的性能,提出了一种基于灰度熵多阈值分割和支持向量机(supportvector machine,SVM)的火焰图像状态识别方法。对火焰图像进行基于灰度熵准则的多阈值分割,采用改进粒子群优化算法选取最优多阈值,由此快速准确地分割出火焰图像中的背景区域、有效燃烧区域及高温燃烧区域;然后,提取火焰图像的10个特征参数,以此作为训练样本训练支持向量机,最后采用支持向量机依据提取的特征对火焰图像进行分类,并通过上述改进粒子群优化算法优化支持向量机中的2个参数。实验结果表明,提出的方法分割结果正确,与采用将图像像素作为训练样本的方法相比,该方法的分类识别正确率更高,运行速度大大加快。
|