首页 | 本学科首页   官方微博 | 高级检索  
     


Electrical, structural, and optical characterization of free-standing GaN template grown by hydride vapor phase epitaxy
Authors:F. Yun, M. A. Reshchikov, K. Jones, P. Visconti, H. Morko  , S. S. Park,K. Y. Lee
Affiliation:

a Department of Electrical Engineering, and Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, USA

b Samsung Advanced Institute of Technology, P.O. Box 111, Suwon 440 600, South Korea

Abstract:Electrical, structural, and optical properties of a free-standing 200 μm thick n-type GaN template grown by hydride vapor phase epitaxy have been investigated. Hall mobilities of 1100 and 6800 cm2/V s have been obtained at room temperature and 50 K, respectively. Quantitative analysis of acceptor concentration, donor concentration and donor activation energy has been conducted through simultaneous fitting of the temperature dependent Hall mobility and carrier concentration data which led to a donor concentration of 2.10×1016 cm−3 and an acceptor concentration of 4.9×1015 cm−3. The resultant donor activation energy is 18 meV. The analysis indicates that the dominant scattering mechanism at low temperatures is by ionized impurities. The extended defect concentrations on Ga- and N-faces were about 5×105 cm−2 for the former and about 1×107 cm−2 for the latter, as revealed by a chemical etch. The full width at half maximum of the symmetric (0 0 0 2) X-ray diffraction peak was 69″ and 160″ for the Ga- and N-faces, respectively. That for the asymmetric (10–14) peak was 103″ and 140″ for Ga- and N-faces, respectively. The donor bound exciton linewidth as measured on the Ga- and N-face (after a chemical etch to remove the damage) is about 1 meV each at 10 K. Instead of the commonly observed yellow band, this sample displayed a green band, which is centered at about 2.45 eV.
Keywords:Free-standing GaN   Mobility   Etch-pit density   XRD   Photoluminescence
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号