首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic time-resolved diffuse spectroscopy based on supercontinuum light pulses
Authors:Swartling Johannes  Bassi Andrea  D'Andrea Cosimo  Pifferi Antonio  Torricelli Alessandro  Cubeddu Rinaldo
Affiliation:ULTRAS-INFM, IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, P. L. da Vinci 32, I-20133 Milano, Italy. js604@cam.ac.uk
Abstract:We present a detailed characterization of a system for fast time-resolved spectroscopy of turbid media based on supercontinuum generation in a photonic crystal fiber. The light source provides subpicosecond pulses in the 550-1000-nm spectral range, at 85 MHz, at an average power of up to 50 mW. Wavelength-resolved detection is accomplished by means of a spectrometer coupled to a 16-channel, multianode photomultiplier tube, giving a resolution of 4.5-35 nm/channel, depending on the grating. Time-dispersion curves are acquired with time-correlated single-photon counting, and absorption and reduced scattering coefficients are determined by fitting the data to the diffusion equation. We characterized the system by measuring the time-resolved diffuse reflectance of epoxy phantoms and by assessing the performance in terms of accuracy, linearity, noise sensitivity, stability, and reproducibility. The results were similar to those from previous systems, whereas the full-spectrum (610-810 nm) acquisition time was as short as 1 s owing to the parallel acquisition. We also present the first in vivo real-time dynamic spectral measurements showing tissue oxygenation changes in the arm of a human subject.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号