首页 | 本学科首页   官方微博 | 高级检索  
     

面向火炮射击密集度的随机因素稳健设计
引用本文:王丽群,杨国来,刘俊民,葛建立. 面向火炮射击密集度的随机因素稳健设计[J]. 兵工学报, 2016, 37(11): 1983-1988. DOI: 10.3969/j.issn.1000-1093.2016.11.003
作者姓名:王丽群  杨国来  刘俊民  葛建立
作者单位:(1.南京理工大学 机械工程学院, 江苏 南京 210094;2.内蒙古北方重工业集团有限公司, 内蒙古 包头 014033)
基金项目:国家“973”计划项目(6132490303),国家自然科学基金项目(11572158),中央高校基本科研业务费专项资金项目(30915118825)
摘    要:为了实现对射击密集度的有效控制,解决考虑随机因素的射击密集度优化设计问题,利用基于随机模型和随机优化的稳健设计理论,提出一种指标要求导向型的随机因素参数区间计算方法。基于蒙特卡洛模拟,采用六自由度外弹道模型,利用某型大口径榴弹炮数据求解射击密集度并研究其统计特性。利用不合格概率、灵敏度指数两个稳健目标准则,构建射击密集度稳健设计随机模型。采用带精英策略非支配排序遗传算法并结合反向传播神经网络代理模型技术对稳健设计随机模型进行优化求解,确定符合指标要求的随机因素参数区间。对比分析结果表明,该方法可同时保证射击密集度指标的最优性和稳健性,对射击密集度的预测具有一定可行性。

关 键 词:兵器科学与技术  射击密集度  稳健设计  随机因素  多目标遗传算法  神经网络  
收稿时间:2016-05-13

Robust Design of Random Factors on Gun Firing Dispersion
WANG Li-qun,YANG Guo-lai,LIU Jun-min,GE Jian-li. Robust Design of Random Factors on Gun Firing Dispersion[J]. Acta Armamentarii, 2016, 37(11): 1983-1988. DOI: 10.3969/j.issn.1000-1093.2016.11.003
Authors:WANG Li-qun  YANG Guo-lai  LIU Jun-min  GE Jian-li
Affiliation:(1.School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,Jiangsu,China;2.Inner Mongolia North Heavy Industries Group Co., Ltd.,Baotou 014033,Inner Mongolia,China)
Abstract:To study the effective ways to improve the firing dispersion and solve its optimal design problem considering random factors, a calculation method of parameters interval oriented by the predefined indicators is proposed by using robust design theory based on random model and random optimization. A large caliber howitzer data is used to calculate firing dispersion based on Monte Carlo simulation and six degrees of freedom exterior ballistics model, and the statistical properties of firing dispersion are analyzed. A random model of robust design is built by calculating the objective criteria of robust design including unqualified probability and sensitivity index. Based on multi-objective genetic algorithm (NSGA-II) and BP neural network, the random model is optimized to determine the parameters interval of random factors which meet the requirements. The analysis results show that the proposed method can ensure the optimality and robustness of firing dispersion, and is feasible for the prediction of firing dispersion.
Keywords:ordnance science and technology  firing dispersion  robust design  random factor  multi-objective genetic algorithm  neural network
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《兵工学报》浏览原始摘要信息
点击此处可从《兵工学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号