首页 | 本学科首页   官方微博 | 高级检索  
     

中止燃烧方法模拟固体推进剂动态点火冲击过程(英)
引用本文:张怀龙,王勇,菅晓霞,周伟良,肖乐勤.中止燃烧方法模拟固体推进剂动态点火冲击过程(英)[J].含能材料,2020,28(1):62-70.
作者姓名:张怀龙  王勇  菅晓霞  周伟良  肖乐勤
作者单位:南京理工大学化工学院,江苏 南京 210094,上海航天动力技术研究所,上海 201109,南京理工大学化工学院,江苏 南京 210094,南京理工大学化工学院,江苏 南京 210094,南京理工大学化工学院,江苏 南京 210094
摘    要:为了研究火箭发动机点火过程中动态冲击对固体推进剂的影响,设计了一个基于中止燃烧的模拟点火冲击装置。该装置由点火螺栓、燃烧室和泄压螺栓组成。金属爆破片安装在泄压螺栓的剪切口处,在点火冲击过程中准确控制泄压压力。模拟点火冲击试验的研究对象是圆环柱体形状的poly(BAMO-THF)/AP/Al固体推进剂试样。p-t曲线表明爆破片的泄压压力与测得的压力一致,其误差在±6%。根据p-t曲线计算增压速率,10 MPa下增压速率达到7000 MPa·s-1,15 MPa下增压速率达到12000 MPa·s-1,这远远大于固体火箭实际点火过程中的增压速率。在模拟点火冲击试验后,推进剂试样端面(受损表面)镶嵌的粒子受损,而内侧表面(未损表面)仍保持完整的状态。点火冲击试验后,推进剂试样的压缩强度增加,而压缩强度开始增加时的形变值降低。这说明在模拟点火冲击试验后,推进剂受损表面会进一步受损,力学性能也会发生改变。

关 键 词:固体推进剂  模拟点火冲击  中止燃烧  增压速率  压缩性能  solid  propellant  simulation  dynamic  shock  quenched  combustion  pressurization  rate  compressive  property
收稿时间:2019/5/5 0:00:00
修稿时间:2019/9/21 0:00:00

Simulation Dynamic Shock of Ignition Process on Solid Propellant with Quenched Combustion Method
ZHANG Huai-long,WANG Yong,JIAN Xiao-xi,ZHOU Wei-liang and XIAO Le-qin.Simulation Dynamic Shock of Ignition Process on Solid Propellant with Quenched Combustion Method[J].Chinese Journal of Energetic Materials,2020,28(1):62-70.
Authors:ZHANG Huai-long  WANG Yong  JIAN Xiao-xi  ZHOU Wei-liang and XIAO Le-qin
Affiliation:School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China,Shanghai Space Propulsion Technology Research Institute, Shanghai 201109, China,School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China,School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China,School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract:In order to study the effect of dynamic shock on solid propellant during the ignition process of solid rocket motor, a simulation setup based on quenched combustion was designed. The setup is composed of an ignition bolt, a combustion chamber, and a releasing pressure bolt. The metal burst disk is installed in the shear hole of the releasing pressure bolt and controls the ignition pressure precisely during the ignition shock process. Poly(BAMO-THF)/AP/Al solid propellant samples,molded into hollow cylinder, were used to evaluate the simulation shock process in setup. The p-t curves show that the blow-out pressure of burst disk is corresponding to the measured blow-out pressure in strong ignition mode and the pressure deviation is less than ±6%. The calculated pressurization rate according to the collected p-t curves can reach 7000 MPa·s-1 at 10 MPa ignition and 12000 MPa·s-1 at 15 MPa ignition, which are much more than the pressurization rate for actual ignition process of solid rocket. After simulation ignition shock experiment, filler particles implanted in the end face of propellant samples are damaged, while the inside surface basically keeps an intact condition. Compressive strength generally increases after ignition shock process, while the strain value at the point decreases when the compressive strength begins to rise. It is included that propellants with unstable structure are easier to be damaged and the mechanical properties would be changed during simulation ignition shock process.
Keywords:solid propellant  simulation dynamic shock  quenched combustion  pressurization rate  compressive property
本文献已被 万方数据 等数据库收录!
点击此处可从《含能材料》浏览原始摘要信息
点击此处可从《含能材料》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号