首页 | 本学科首页   官方微博 | 高级检索  
     

轩辕:AI原生数据库系统
引用本文:李国良,周煊赫. 轩辕:AI原生数据库系统[J]. 软件学报, 2020, 31(3): 831-844
作者姓名:李国良  周煊赫
作者单位:清华大学计算机科学与技术系,北京 100084;清华大学计算机科学与技术系,北京 100084
基金项目:国家自然科学基金(61632016,61521002,61661166012);973项目(2015CB358700)
摘    要:大数据时代下,数据库系统主要面临3个方面的挑战:首先,基于专家经验的传统优化技术(如代价估计、连接顺序选择、参数调优)已经不能满足异构数据、海量应用和大规模用户对性能的需求,可以设计基于学习的数据库优化技术,使数据库更智能;其次,AI时代,很多数据库应用需要使用人工智能算法,如数据库中的图像搜索,可以将人工智能算法嵌入到数据库,利用数据库技术加速人工智能算法,并在数据库中提供基于人工智能的服务;再者,传统数据库侧重于使用通用硬件(如CPU),不能充分发挥新硬件(如ARM、AI芯片)的优势.此外,除了关系模型,数据库需要支持张量模型来加速人工智能操作.为了解决这些挑战,提出了原生支持人工智能(AI)的数据库系统,将各种人工智能技术集成到数据库中,以提供自监控、自配置、自优化、自诊断、自愈、自安全和自组装功能;另一方面,通过使用声明性语言,让数据库提供人工智能功能,以降低人工智能的使用门槛.介绍了实现人工智能原生数据库的5个阶段,并给出了设计人工智能原生数据库的挑战.以自主数据库调优、基于深度强化学习的查询优化、基于机器学习的基数估计和自主索引/视图推荐为例,展示了人工智能原生数据库的优势...

关 键 词:数据库  人工智能  计算框架
收稿时间:2019-07-07
修稿时间:2019-09-10

XuanYuan: An AI-native Database Systems
LI Guo-Liang and ZHOU Xuan-He. XuanYuan: An AI-native Database Systems[J]. Journal of Software, 2020, 31(3): 831-844
Authors:LI Guo-Liang and ZHOU Xuan-He
Affiliation:Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China and Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
Abstract:In big data era, database systems face three challenges. Firstly, the traditional empirical optimization techniques (e.g., cost estimation, join order selection, knob tuning) cannot meet the high-performance requirement for large-scale data, various applications and diversified users. We need to design learning-based techniques to make database more intelligent. Secondly, many database applications require to use AI algorithms, e.g., image search in database. We can embed AI algorithms into database, utilize database techniques to accelerate AI algorithms, and provide AI capability inside databases. Thirdly, traditional databases focus on using general hardware (e.g., CPU), but cannot fully utilize new hardware (e.g., ARM, GPU, AI chips). Moreover, besides relational model, we can utilize tensor model to accelerate AI operations. Thus, we need to design new techniques to make full use of new hardware. To address these challenges, we design an AI-native database. On one hand, we integrate AI techniques into databases to provide self-configuring, self-optimizing, self-monitoring, self-diagnosis, self-healing, self-assembling, and self-security capabilities. On the other hand, we enable databases to provide AI capabilities using declarative languages in order to lower the barrier of using AI. In this paper, we introduce five levels of AI-native databases and provide several open challenges of designing an AI-native database. We also take autonomous database knob tuning, deep reinforcement learning based optimizer, machine-learning based cardinality estimation, and autonomous index/view advisor as examples to showcase the superiority of AI-native databases.
Keywords:database  artificial intelligence  computing architecture
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号