Static and dynamic analysis of an FGM doubly curved panel resting on the Pasternak-type elastic foundation |
| |
Authors: | Y. Kiani A.H. Akbarzadeh Z.T. Chen M.R. Eslami |
| |
Affiliation: | 1. Mechanical Engineering Department, Amirkabir University of Technology, Tehran 15914, Iran;2. Mechanical Engineering Department, University of New Brunswick, Fredericton, NB, Canada E3B 5A3 |
| |
Abstract: | The static, dynamic, and free vibration analysis of a functionally graded material (FGM) doubly curved panel are investigated analytically in the present paper. The FGM Panel is originated from a rectangular planform and its principle curvatures are considered to be constant. All mechanical properties of the FGM panel are assumed to vary continuously through the thickness according to a power law formulation except Poisson’s ratio, which is kept constant. A Pasternak-type elastic foundation containing damping effects is considered to be in contact with the panel during deformation. The elastic foundation reacts in both compression and tension. Equations of motion are established based on the first order shear deformation and the modified Sanders shell theories. Following the Navier type solution, the established equations are reduced to time-dependent ordinary differential equations. Using the Laplace transform, the time-dependency of the problem is eliminated. The solutions are obtained analytically in the Laplace domain and then are inverted to the time domain following an analytical procedure. Finally, the analytical results are verified with those reported in the literature. |
| |
Keywords: | Doubly curved panel Functionally graded materials Hybrid Fourier&ndash Laplace transform Modified Sanders shell theory Pasternak elastic foundation |
本文献已被 ScienceDirect 等数据库收录! |
|