首页 | 本学科首页   官方微博 | 高级检索  
     


Friedel–Crafts green alkylation of xylenes with tert-butanol over mesoporous superacid UDCaT-5
Authors:Ganapati D Yadav  Shashikant B Kamble
Affiliation:Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
Abstract:Friedel–Crafts green alkylation of xylenes with tert-butanol was investigated in the presence of mesoporous superacidic catalysts named as UDCaT-4, UDCaT-5 and UDCaT-6. The catalysts are modified versions of zirconia showing high catalytic activity, stability and reusability. The catalytic activity is in the order: UDCaT-5 (most active) > UDCaT-6 > UDCaT-4 > sulfated zirconia (least active). Synergistic effect of very high sulfur content present (9% (w/w) S) and preservation of tetragonal phase in UDCaT-5, in comparison with sulfated zirconia (4% (w/w) S), were responsible for higher catalytic activity. The performance of UDCaT-5 in alkylation of xylenes was studied with tert-butanol with reference to selectivity and stability. Alkylation of m-xylene over UDCaT-5 gives 96% conversion of tert-butanol with 82% selectivity towards 5-tert-butyl-m-xylene (5-TBMX) under optimum reaction conditions. The formation of products is correlated with the acidity of the catalyst. The reactions were conducted in liquid phase at relatively low reaction temperatures (130–160 °C). A systematic investigation of the effects of various operating parameters was done to describe the reaction pathway. The reaction was carried out without any solvent in order to make the process cleaner and greener. An overall second order kinetic equation was used to fit the experimental data, under the assumption that both xylene and tert-butanol are weakly adsorbed. An independent study of dehydration of tert-butanol (TBA) was also done. Alkylation of o-xylene and p-xylene with tert-butanol was also studied. The overall process is green and clean.
Keywords:Friedel&ndash  Crafts green alkylation  tert-Butyl xylenes  UDCaT-5  Sulfated zirconia  Green chemistry
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号