首页 | 本学科首页   官方微博 | 高级检索  
     


Optimization of aqueous p-aminophenol degradation by external-loop airlift sonophotoreactor using response surface methodology
Authors:Masroor Mohajerani  Mehrab MehrvarFarhad Ein-Mozaffari
Affiliation:Department of Chemical Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada M5B 2K3
Abstract:The combination of sonolysis and photolysis in the presence of hydrogen peroxide (H2O2) in a 7-L external-loop airlift sonophotoreactor was used to treat the aqueous solution of p-aminophenol. The central composite design (CCD) and response surface methodology (RSM) were employed to evaluate the interaction effects of the initial H2O2 concentration (x1 = 100–900 mg/L), the ultrasonic power (x2 = 25–65 W), the air flow rate (x3 = 1–5 L/min), and the initial concentration of p-aminophenol (x4 = 10–50 mg/L) on the p-aminophenol degradation and total organic carbon (TOC) reduction efficiencies as well as to optimize operating conditions. The coefficients of determination (R2) and adjusted-R2 obtained from the analysis of variance (ANOVA) were 0.9900 and 0.9812 for the p-aminophenol degradation; and 0.9742 and 0.9516 for the TOC removal, respectively, ensuring a satisfactory adjustment of the quadratic regression model with experimental results. The linear, square, and interaction effects of x1, x2, x3, and x4 were also calculated. Genetic algorithm optimization was employed to maximize the mineralization efficiency. 79% TOC reduction efficiency after 90 min and 86.5% p-aminophenol removal efficiency after 30 min were achieved under recirculating batch mode at operating conditions of x1 = 740 mg/L, x2 = 65 W, x3 = 5 L/min, and x4 = 24 mg/L.
Keywords:Advanced oxidation process  Airlift sonophotoreactor  p-Aminophenol  Response surface methodology
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号