首页 | 本学科首页   官方微博 | 高级检索  
     


Nanoscale Analyses of High-Nickel Concentration Martensitic High-Strength Steels
Authors:Dieter Isheim  Allen H Hunter  Xian J Zhang  David N Seidman
Affiliation:1. Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
2. Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
3. Carderock Division, Naval Surface Warfare Center, West Bethesda, MD, USA
Abstract:Austenite reversion in martensitic steels is known to improve fracture toughness. This research focuses on characterizing mechanical properties and the microstructure of low-carbon, high-nickel steels containing 4.5 and 10 wt pct Ni after a QLT-type austenite reversion heat treatment: first, martensite is formed by quenching (Q) from a temperature in the single-phase austenite field, then austenite is precipitated by annealing in the upper part of the intercritical region in a lamellarization step (L), followed by a tempering (T) step at lower temperatures. For the 10 wt pct Ni steel, the tensile strength after the QLT heat treatment is 910 MPa (132 ksi) at 293 K (20 °C), and the Charpy V-notch impact toughness is 144 J (106 ft-lb) at 188.8 K (?84.4 °C, ?120 °F). For the 4.5 wt pct Ni steel, the tensile strength is 731 MPa (106 ksi) at 293 K (20 °C) and the impact toughness is 209 J (154 ft-lb) at 188.8 K (?84.4 °C, ?120 °F). Light optical microscopy, scanning electron and transmission electron microscopies, synchrotron X-ray diffraction, and local-electrode atom-probe tomography (APT) are utilized to determine the morphologies, volume fractions, and local chemical compositions of the precipitated phases with sub-nanometer spatial resolution. The austenite lamellae are up to 200 nm in thickness, and up to several micrometers in length. In addition to the expected partitioning of Ni to austenite, APT reveals a substantial segregation of Ni at the austenite/martensite interface with concentration maxima of 10 and 23 wt pct Ni for the austenite lamellae in the 4.5 and 10 wt pct Ni steels, respectively. Copper-rich and M2C-type metal carbide precipitates were detected both at the austenite/martensite interface and within the bulk of the austenite lamellae. Thermodynamic phase stability, equilibrium compositions, and volume fractions are discussed in the context of Thermo-Calc calculations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号