首页 | 本学科首页   官方微博 | 高级检索  
     


Stress Rupture Fracture Model and Microstructure Evolution for Waspaloy
Authors:Zhihao Yao  Maicang Zhang  Jianxin Dong
Affiliation:1. Department of Materials Science, University of Science and Technology Beijing, Beijing, 100083, P.R. China
Abstract:Stress rupture behavior and microstructure evolution of nickel-based superalloy Waspaloy specimens from tenon teeth of an as-received 60,000-hour service-exposed gas turbine disk were studied between 923 K and 1088 K (650 °C and 815 °C) under initial applied stresses varying from 150 to 840 MPa. Good microstructure stability and performance were verified for this turbine disk prior to stress rupture testing. Microstructure instability, such as the coarsening and dissolution of γ′ precipitates at the varying test conditions, was observed to be increased with temperature and reduced stress. Little microstructure variation was observed at 923 K (650 °C). Only secondary γ′ instability occurred at 973 K (700 °C). Four fracture mechanisms were obtained. Transgranular creep fracture was exhibited up to 923 K (650 °C) and at high stress. A mixed mode of transgranular and intergranular creep fracture occurred with reduced stress as a transition to intergranular creep fracture (ICF) at low stress. ICF was dominated by grain boundary sliding at low temperature and by the nucleation and growth of grain boundary cavities due to microstructure instability at high temperature. The fracture mechanism map and microstructure-related fracture model were constructed. Residual lifetime was also evaluated by the Larson–Miller parameter method.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号